Transmissible Spongiform encephalopathy

From Wikihomeopathy
Revision as of 04:05, 23 March 2023 by Mehrdad (talk | contribs) (1 revision imported)
Jump to navigation Jump to search

FFI

KRU

Clinic

  • TSEs are a group of progressive and fatal conditions that are associated with prions (CJD, NVCJD, GSS, FFI and KRU)
  • According to the most widespread hypothesis, they are transmitted by prions, though some other data suggest an involvement of a Spiroplasma infection.
  • Its name comes from many tiny holes appearing in the cortex in autopsy.

Sign / Symptoms

  • Memory changes,
  • Personality changes
  • Problems with movement

Features[edit]

The degenerative tissue damage caused by human prion diseases (CJD, GSS, and kuru) is characterised by four features: spongiform change, neuronal loss, astrocytosis, and amyloid plaque formation. These features are shared with prion diseases in animals, and the recognition of these similarities prompted the first attempts to transmit a human prion disease (kuru) to a primate in 1966, followed by CJD in 1968 and GSS in 1981. These neuropathological features have formed the basis of the histological diagnosis of human prion diseases for many years, although it was recognized that these changes are enormously variable both from case to case and within the central nervous system in individual cases.

The clinical signs in humans vary, but commonly include personality changes, psychiatric problems such as depression, lack of coordination, and/or an unsteady gait (ataxia). Patients also may experience involuntary jerking movements called myoclonus, unusual sensations, insomnia, confusion, or memory problems. In the later stages of the disease, patients have severe mental impairment (dementia) and lose the ability to move or speak.

Early neuropathological reports on human prion diseases suffered from a confusion of nomenclature, in which the significance of the diagnostic feature of spongiform change was occasionally overlooked. The subsequent demonstration that human prion diseases were transmissible reinforced the importance of spongiform change as a diagnostic feature, reflected in the use of the term "spongiform encephalopathy" for this group of disorders.

Prions appear to be most infectious when in direct contact with affected tissues. For example, Creutzfeldt–Jakob disease has been transmitted to patients taking injections of growth hormone harvested from human pituitary glands, from cadaver dura allografts and from instruments used for brain surgery (Brown, 2000) (prions can survive the "autoclave" sterilization process used for most surgical instruments). It is also believed[by whom?] that dietary consumption of affected animals can cause prions to accumulate slowly, especially when cannibalism or similar practices allow the proteins to accumulate over more than one generation. An example is kuru, which reached epidemic proportions in the mid-20th century in the Fore people of Papua New Guinea, who used to consume their dead as a funerary ritual. Laws in developed countries now ban the use of rendered ruminant proteins in ruminant feed as a precaution against the spread of prion infection in cattle and other ruminants.[citation needed]

There exists evidence that prion diseases may be transmissible by the airborne route.

Note that not all encephalopathies are caused by prions, as in the cases of PML (caused by the JC virus), CADASIL (caused by abnormal NOTCH3 protein activity), and Krabbe disease (caused by a deficiency of the enzyme galactosylceramidase). Progressive Spongiform Leukoencephalopathy (PSL)—which is a spongiform encephalopathy—is also probably not caused by a prion, although the adulterant that causes it among heroin smokers has not yet been identified. This, combined with the highly variable nature of prion disease pathology, is why a prion disease cannot be diagnosed based solely on a patient's symptoms.

Cause[edit]

Genetics[edit]

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2018) (Learn how and when to remove this template message)

Mutations in the PRNP gene cause prion disease. Familial forms of prion disease are caused by inherited mutations in the PRNP gene. Only a small percentage of all cases of prion disease run in families, however. Most cases of prion disease are sporadic, which means they occur in people without any known risk factors or gene mutations. In rare circumstances, prion diseases also can be transmitted by exposure to prion-contaminated tissues or other biological materials obtained from individuals with prion disease.

The PRNP gene provides the instructions to make a protein called the prion protein (PrP). Under normal circumstances, this protein may be involved in transporting copper into cells. It may also be involved in protecting brain cells and helping them communicate. 24[citation needed] Point-Mutations in this gene cause cells to produce an abnormal form of the prion protein, known as PrPSc. This abnormal protein builds up in the brain and destroys nerve cells, resulting in the signs and symptoms of prion disease.

Familial forms of prion disease are inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person inherits the altered gene from one affected parent.

In some people, familial forms of prion disease are caused by a new mutation in the PRNP gene. Although such people most likely do not have an affected parent, they can pass the genetic change to their children.

Protein-only hypothesis[edit]

Protein could be the infectious agent, inducing its own replication by causing conformational change of normal cellular PrPC into PrPSc. Evidence for this hypothesis:

  • Infectivity titre correlates with PrPSc levels. However, this is disputed.
  • PrPSc is an isomer of PrPC
  • Denaturing PrP removes infectivity
  • PrP-null mice cannot be infected
  • PrPC depletion in the neural system of mice with established neuroinvasive prion infection reverses early spongeosis and behavioural deficits, halts further disease progression and increases life-span

Multi-component hypothesis[edit]

See also: Protein misfolding cyclic amplification

While not containing a nucleic acid genome, prions may be composed of more than just a protein. Purified PrPC appears unable to convert to the infectious PrPSc form, unless other components are added, such as RNA and lipids. These other components, termed cofactors, may form part of the infectious prion, or they may serve as catalysts for the replication of a protein-only prion.

Viral hypothesis[edit]

This hypothesis postulates that an as of yet undiscovered infectious viral agent is the cause of the disease. Evidence for this hypothesis is as follows:

  • Incubation time is comparable to a lentivirus
  • Strain variation of different isolates of PrPSc
  • An increasing titre of PrPSc as the disease progresses suggests a replicating agent.